Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT IntroductionCurrent wearables that collect heart rate and acceleration were not designed for children and/or do not allow access to raw signals, making them fundamentally unverifiable. This study describes the creation and calibration of an open-source multichannel platform (PATCH) designed to measure heart rate and acceleration in children ages 3–8 yr. MethodsChildren (N = 63; mean age, 6.3 yr) participated in a 45-min protocol ranging in intensities from sedentary to vigorous activity. Actiheart-5 was used as a comparison measure. We calculated mean bias, mean absolute error (MAE) mean absolute percent error (MA%E), Pearson correlations, and Lin’s concordance correlation coefficient (CCC). ResultsMean bias between PATCH and Actiheart heart rate was 2.26 bpm, MAE was 6.67 bpm, and M%E was 5.99%. The correlation between PATCH and Actiheart heart rate was 0.89, and CCC was 0.88. For acceleration, mean bias was 1.16 mg and MAE was 12.24 mg. The correlation between PATCH and Actiheart was 0.96, and CCC was 0.95. ConclusionsThe PATCH demonstrated clinically acceptable accuracies to measure heart rate and acceleration compared with a research-grade device.more » « less
-
Yamada, Yosuke (Ed.)The purpose of this study was to evaluate the reliability and validity of the raw accelerometry output from research-grade and consumer wearable devices compared to accelerations produced by a mechanical shaker table. Raw accelerometry data from a total of 40 devices (i.e., n = 10 ActiGraph wGT3X-BT, n = 10 Apple Watch Series 7, n = 10 Garmin Vivoactive 4S, and n = 10 Fitbit Sense) were compared to reference accelerations produced by an orbital shaker table at speeds ranging from 0.6 Hz (4.4 milligravity-mg) to 3.2 Hz (124.7mg). Two-way random effects absolute intraclass correlation coefficients (ICC) tested inter-device reliability. Pearson product moment, Lin’s concordance correlation coefficient (CCC), absolute error, mean bias, and equivalence testing were calculated to assess the validity between the raw estimates from the devices and the reference metric. Estimates from Apple, ActiGraph, Garmin, and Fitbit were reliable, with ICCs = 0.99, 0.97, 0.88, and 0.88, respectively. Estimates from ActiGraph, Apple, and Fitbit devices exhibited excellent concordance with the reference CCCs = 0.88, 0.83, and 0.85, respectively, while estimates from Garmin exhibited moderate concordance CCC = 0.59 based on the mean aggregation method. ActiGraph, Apple, and Fitbit produced similar absolute errors = 16.9mg, 21.6mg, and 22.0mg, respectively, while Garmin produced higher absolute error = 32.5mg compared to the reference. ActiGraph produced the lowest mean bias 0.0mg (95%CI = -40.0, 41.0). Equivalence testing revealed raw accelerometry data from all devices were not statistically significantly within the equivalence bounds of the shaker speed. Findings from this study provide evidence that raw accelerometry data from Apple, Garmin, and Fitbit devices can be used to reliably estimate movement; however, no estimates were statistically significantly equivalent to the reference. Future studies could explore device-agnostic and harmonization methods for estimating physical activity using the raw accelerometry signals from the consumer wearables studied herein.more » « less
-
Abstract Study ObjectivesEvaluate wrist-placed accelerometry predicted heartrate compared to electrocardiogram (ECG) heartrate in children during sleep. MethodsChildren (n = 82, 61% male, 43.9% black) wore a wrist-placed Apple Watch Series 7 (AWS7) and ActiGraph GT9X during a polysomnogram. Three-Axis accelerometry data was extracted from AWS7 and the GT9X. Accelerometry heartrate estimates were derived from jerk (the rate of acceleration change), computed using the peak magnitude frequency in short time Fourier Transforms of Hilbert transformed jerk computed from acceleration magnitude. Heartrates from ECG traces were estimated from R-R intervals using R-pulse detection. Lin’s concordance correlation coefficient (CCC), mean absolute error (MAE), and mean absolute percent error (MAPE) assessed agreement with ECG estimated heart rate. Secondary analyses explored agreement by polysomnography sleep stage and a signal quality metric. ResultsThe developed scripts are available on Github. For the GT9X, CCC was poor at −0.11 and MAE and MAPE were high at 16.8 (SD = 14.2) beats/minute and 20.4% (SD = 18.5%). For AWS7, CCC was moderate at 0.61 while MAE and MAPE were lower at 6.4 (SD = 9.9) beats/minute and 7.3% (SD = 10.3%). Accelerometry estimated heartrate for AWS7 was more closely related to ECG heartrate during N2, N3 and REM sleep than lights on, wake, and N1 and when signal quality was high. These patterns were not evident for the GT9X. ConclusionsRaw accelerometry data extracted from AWS7, but not the GT9X, can be used to estimate heartrate in children while they sleep. Future work is needed to explore the sources (i.e. hardware, software, etc.) of the GT9X’s poor performance.more » « less
An official website of the United States government
